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Problem formulation

Given a closed-graph multifunction M : Rn × Rm ⇒ Rl , the associated implicit
multifunction S : Rn ⇒ Rm is defined by

S(p) := {x ∈ Rm|0 ∈ M(p, x)}. (1)

Our main aim is analysis of Lipschitzian properties of S around a given reference point
(p̄, x̄) ∈ gph S. In particular, we will focus on the so-called Aubin property.

Special cases:

1) parameterized constraint systems

M(p, x) = G(p, x) + Λ, (2)

where G : Rn × Rm ⇒ Rl is single-valued and Λ ⊂ Rl is closed.

2) parameterized variational systems

M(p, x) = H(p, x) + Q(x), (3)

where H is like in (i) and Q : Rm ⇒ Rl is closed-valued. Typically, l = m and
Q(·) = NΓ(·) with a closed set Γ ⊂ Rm. Case (3) then leads to a parameterized
variational inequality/generalized equation.
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Applications

1) Post-optimal analysis of parameterized equilibria: Having an equilibrium computed
for a given set of parameters (problem data), one tries to detect whether, roughly
speaking, a small change of a some parameters (uncertain data) leads to a
proportional change of the respective equilibrium.

2) Solution of MPECs/EPECs: In a hierarchical bilevel game the lower-level players
typically compute a non-cooperative equilibrium, parameterized by the
strategy(ies) of the upper-level player(s). The local stability analysis of this
mapping is essential in computing optimal strategies of the upper-level player(s).
Such a situation arises, e.g., in deregulated electricity markets of in optimal design
of some mechanical structures.
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Ad (i) Selected tools of variational analysis

Definition
Given a closed set A ⊂ Rn and x̄ ∈ A, we define

(i) the tangent (Bouligand) cone to A at x̄ by

TA(x̄) := {h ∈ Rn|∃hi → h, ϑi ↘ 0 : x̄ + ϑihi ∈ A∀i};

(ii) the regular (Fréchet) normal cone to A at x̄ by

N̂A(x̄) := (TA(x̄))◦;

(iii) the limiting (Mordukhovich) normal cone to A at x̄ by

NA(x̄) := {ξ ∈ Rn|∃xi
A→ x̄ , ξi → ξ : ξi ∈ N̂A(xi )∀i}.

(iv) Finally, given a direction h ∈ Rn, the cone

NA(x̄ ; h) := {ξ ∈ Rn|∃hi → h, ϑi ↘ 0, ξi → ξ : ξi ∈ N̂A(x̄ + ϑihi )∀i}

is called the directional limiting normal cone to A at x̄ in the direction h.
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Ad (i) Example
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NA(x̄;h)

For h ∈ {0} × R+

For h ∈ R+ × {0}

x̄

A

0

0 0

0

0

TA(x̄)

N̂A(x̄) NA(x̄)
NA(x̄;h)
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Definition
Consider a point (ū, v̄) ∈ Gr F . Then

(i) the multifunction DF (ū, v̄) : Rn ⇒ Rl , defined by

DF (ū, v̄)(h) := {k ∈ Rl |(h, k) ∈ Tgph F (ū, v̄)}, h ∈ Rn,

is called the graphical derivative of F at (ū, v̄);

(ii) the multifunction D̂∗F (ū, v̄) : Rl ⇒ Rn, defined by

D̂∗F (ū, v̄)(v∗) := {u∗ ∈ Rn|(u∗,−v∗) ∈ N̂gph F (ū, v̄)}, v∗ ∈ Rl ,

is called the regular (Fréchet) coderivative of F at (ū, v̄).

(iii) the multifunction D∗F (ū, v̄) : Rl ⇒ Rn, defined by

D∗F (ū, v̄)(v∗) := {u∗ ∈ Rn|(u∗,−v∗) ∈ Ngph F (ū, v̄)}, v∗ ∈ Rl ,

is called the limiting (Mordukhovich) coderivative of F at (ū, v̄).

(iv) Finally, given a pair of directions (h, k) ∈ Rn × Rl , the multifunction
D∗F ((ū, v̄); (h, k)) : Rl ⇒ Rn, defined by

D∗F ((ū, v̄); (h, k))(v∗) := {u∗ ∈ Rn|(u∗,−v∗) ∈ Ngph F ((ū, v̄); (h, k))}, v∗ ∈ Rl ,
(4)

is called the directional limiting coderivative of F at (ū, v̄) in direction (h, k).
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Ad (ii) Basic Lipschitzian stability notions

Consider a multifunction S : Rl ⇒ Rn and a point (v̄ , ū) ∈ gph S.

1) We say that S has a single valued Lipschitzian localization around (v̄ , ū), provided
∃ neighborhoods V ,U of v̄ , ū, respectively, and Lipschitzian function σ : V → Rn

such that
ū = σ(v̄) and S(v) ∩ U = {σ(v)} for all v ∈ V .

2) S has the Aubin property around (v̄ , ū), provided ∃ neighborhoods V ,U of v̄ , ū,
respectively, and a constant κ > 0 such that

S(v ′) ∩ U ⊂ S(v) + κ‖v − v ′‖BRl for all v , v ′ ∈ V .

3) S is isolatedly calm at (v̄ , ū), provided ∃ neighborhoods V ,U of v̄ , ū, respectively,
and a constant κ > 0 such that

S(v) ∩ U ⊂ {ū}+ κ‖v − v̄‖BRl for all v ∈ V .

4) S is calm at (v̄ , ū), provided ∃ neighborhoods, V ,U of v̄ , ū, respectively, and a
constant κ > 0 such that

S(v) ∩ U ⊂ S(v̄) + κ‖v − v̄‖BRl for all v ∈ V .
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Ad (ii) Basic Lipschitzian stability notions

S has a single-valued Lipschitzian
localization around (v̄ , ū)

=⇒ S is isolatedly calm
at (v̄ , ū)

⇓ ⇓
S has the Aubin property

around (v̄ , ū)
=⇒ S is calm at (v̄ , ū)

It is well-known that S has the Aubin property around (v̄ , ū) iff F := S−1 is metrically
regular at (ū, v̄), i.e., ∃ neighborhoods U,V of ū, v̄ , respectively, and a constant κ > 0
such that

d(u,F−1(v)) ≤ κ d(v ,F (u)) for all u ∈ U, v ∈ V .

Likewise S is calm at (v̄ , ū) iff F := S−1 is metrically subregular at (ū, v̄), i.e., ∃ a
neighborhood U of ū and a constant κ > 0 such that

d(u,F−1(v̄)) ≤ κ d(v̄ ,F (u)) for all u ∈ U.
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Ad (ii) Basic Lipschitzian stability notions
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Non-Lipschitzian behavior near (v̄, ū)Ad 4)

gph S

Ad 3) DS(v̄, ū)(0) = {0}

gph S

(v̄, ū) = (0, 0)

Ad 2) D∗S(v̄, ū)(0) = {0}

gph S

gph S

gph S

Ad 1) D∗S(v̄, ū)(0) = {0}
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Ad (iii) Existing criteria for the Aubin property

1) Via Mordukhovich criterion [M92]. This characterization, combined with the
coderivative chain rule from [HJO02], yields

Theorem 1
Assume that

M is metrically subregular at (p̄, x̄ , 0);

The implication
(q∗, 0) ∈ D∗M(p̄, x̄ , 0)(b∗)⇒ q∗ = 0. (5)

holds true.

Then S has the Aubin property around (p̄, x̄).
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Ad (iii) Existing criteria for the Aubin property

2) [DQZ06] Assume that M has the Aubin property with respect to p uniformly in x ,
i.e., there exist a constant α > 0 and neighborhoods O of 0, P of p̄ and W of x̄
such that

M(p′, x) ∩O ⊂ M(p, x) + α‖p′ − p‖ BRl for all p, p′ ∈ P, x ∈ W . (6)

Then, with
Mp̄(x) := M(p̄, x),

one has the implication:

Mp̄ is metrically regular
around (x̄ , 0)

}
⇒
{

S has the Aubin property
around (p̄, x̄)

(7)
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Ad (iii) Discussion

The above two criteria are not directly comparable. Consider therefore the special
cases (2), (3) and assume that G,H are continuously differentiable. Then (6) is
automatically fulfilled but condition (7) is more restrictive than (5). On the other hand,
(5) is applicable only under the metric subregularity of M at (p̄, x̄ , 0). If
∇pG(p̄, x̄),∇pH(p̄, x̄) are surjective (ample perturbations), then (5) ensures at the
same time the metric subregularity of M at (p̄, x̄ , 0), both above criteria coincide and
amount to a characterization of the Aubin property of S around (p̄, x̄). Otherwise,
however, both of them may be far from necessity and hence not quite satisfactory.
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Ad (iv) Aubin property of implicit multifunctions

The new approach relies on the possibility to express the Mordukhovich criterion in
terms of the directional limiting coderivatives and on the fact that, for a multifunction
F : Rn ⇒ Rl and (ū, v̄) ∈ gph F ,D∗F ((ū, v̄); (h, k))(a) = ∅ for all a whenever
(h, k) 6∈ Tgph F (ū, v̄).

Theorem 2.
Assume that

M is metrically subregular at (p̄, x̄ , 0);

{u|0 ∈ DM(p̄, x̄ , 0)(v , u)} 6= ∅ for all v ∈ Rn. (8)

For every nonzero (v , u) ∈ Rn ×Rm such that 0 ∈ DM(p̄, x̄ , 0)(v , u) the implication

(q∗, 0) ∈ D∗M((p̄, x̄ , 0); (v , u, 0))(b∗)⇒ q∗ = 0. (9)

holds true.
Then S has the Aubin property around (p̄, x̄) and DS(x̄ , ȳ)(·) admits the
representation

DS(p̄, x̄)(v) = {u|0 ∈ DM(p̄, x̄ , 0)(v , u)}, v ∈ Rn. (10)
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Ad (iv) Aubin property of implicit multifunctions

Corollary.
If, in addition,

0 ∈ DM(p̄, x̄ , 0)(0, u)⇒ u = 0,

then S is isolatedly calm at (p̄, x̄).

Remarks.

Equality (10) means that the graphical derivative of S at (p̄, x̄) is implicitly given by the
graphical derivative of M at (p̄, x̄ , 0). This directly generalizes the classical formula for
the derivative of the implicit functions (U. Dini, 1877).

Since condition (8) is necessary for S to have the Aubin property and the directional
limiting coderivatives are typically much smaller than the standard ones, the conditions
of Theorem 2 are typically less restrictive than the conditions of Theorem 1.
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Ad (iv) If we cannot establish the metric subregularity of M?

Theorem 3.
Let us omit the first assumption of Theorem 2 and strengthen the implication (9) to

(q∗, 0) ∈ D∗M((p̄, x̄ , 0); (v , u, 0))(b∗)⇒ q∗ = 0, b∗ = 0. (11)

Then the assertions of Theorem 2 remain valid.

This follows from the fact that (11) ensures at the same time the metric subregularity of
M at (p̄, x̄ , 0) due to FOSCMS (see [GO15]). The classical counterpart of Theorem 3
from [M1, Section 4.3] reads:

Theorem 4.
Assume that

(q∗, 0) ∈ D∗M((p̄, x̄ , 0)(b∗)⇒ q∗ = 0, b∗ = 0.

Then S has the Aubin property around (p̄, x̄).
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Ad (v) Application to parameterized constraint systems

Consider the special case (2), where

M(p, x) = −G(p, x) + Λ.

Theorem 5.
Assume that G is continuously differentiable and

M is metrically subregular at (p̄, x̄ , 0);

{u|∇pG(p̄, x̄)v +∇x G(p̄, x̄)u ∈ TΛ(G(p̄, x̄))} 6= ∅ for all v ∈ Rn;

For every nonzero (v , u) ∈ Rn × Rm such that

∇pG(p̄, x̄)v +∇x G(p̄, x̄)u ∈ TΛ(G(p̄, x̄))

the implication

0 = ∇x G(p̄, x̄)T b∗

b∗ ∈ NΛ(G(p̄, x̄);∇pG(p̄, x̄)v +∇x G(p̄, x̄)u)

}
⇒ b∗ ∈ ker(∇pG(p̄, x̄))T (12)

holds true.

Then S has the Aubin property around (p̄, x̄) and

DS(p̄, x̄)(v) = {u|∇pG(p̄, x̄)v +∇x G(p̄, x̄)u ∈ TΛ(G(p̄, x̄))}.

Helmut Gfrerer 1, Jiří V. Outrata 2 17 / 31



Ad (v) If we cannot establish the metric subregularity of M?

Theorem 6.
Let us omit the first assumption of Theorem 5 and strengthen the implication (12) to

0 = ∇x G(p̄, x̄)T b∗

b∗ ∈ NΛ(G(p̄, x̄);∇pG(p̄, x̄)v +∇x G(p̄, x̄)u)

}
⇒ b∗ = 0. (13)

Then the assertions of Theorem 5 remain valid.

Helmut Gfrerer 1, Jiří V. Outrata 2 18 / 31



Ad (v) Application to parameterized variational systems

Consider the special case (3), where M(p, x) = H(p, x) + NΓ(x).

Theorem 7.
Let l = m, H be continuously differentiable and Γ ⊂ Rm be convex and closed. Assume
that

M is metrically subregular at (p̄, x̄ , 0);

{u|0 ∈ ∇pH(p̄, x̄)v +∇x H(p̄, x̄)u + DNΓ(x̄ ,−H(p̄, x̄))(u)} 6= ∅ for all v ∈ Rn;

For every nonzero (v , u) ∈ Rn × Rm such that

0 ∈ ∇pH(p̄, x̄)v +∇x H(p̄, x̄)u + DNΓ(x̄ ,−H(p̄, x̄))(u) (14)

the implication

0 ∈ (∇x H(p̄, x̄))T b∗+
D∗NΓ((x̄ ,−H(p̄, x̄)); (u,−∇pH(p̄, x̄))v −∇x H(p̄, x̄)u))(b∗)

}
⇒

⇒ b∗ ∈ ker(∇pH(p̄, x̄))T
(15)

holds true.

Then S has the Aubin property around (p̄, x̄) and

DS(p̄, x̄)(v) = {u|0 ∈ ∇pH(p̄, x̄)v +∇x H(p̄, x̄)u + DNΓ(x̄ ,−H(p̄, x̄))(u)}.
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Ad (v) Application to parameterized variational systems

Remark. If Γ is polyhedral, then

DNΓ(x̄ ,−H(p̄, x̄))(u) = NK (u),

where K := KΓ(x̄ ,H(p̄, x̄)) = TΓ(x̄) ∩ [H(p̄, x̄)]⊥ (critical cone to Γ at x̄ with respect to
H(p̄, x̄)).

Theorem 8.
Let (z, z∗) ∈ gph NΓ and (v , u) ∈ Tgph NΓ

(z, z∗) be given. Then Ngph NΓ
((z, z∗); (v , u)) is

the union of all product sets V 0 × V associated with cones V of the form F1 − F2,
where F1,F2 are closed faces of the critical cone KΓ(z, z∗) satisfying

v ∈ F2 ⊂ F1 ⊂ [u]⊥. (16)

Remark. Clearly for (v , u) = (0, 0), (16) reduces to a result from [DR96].
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Ad (v) Example:

Γ = R+, (z, z∗) = (0, 0) ∈ gph NΓ

KΓ(z, z∗) = TΓ(z) ∩ [z∗]⊥ = R+, F1 = R+,F2 = {0}

By virtue of [DR96],

Ngph NΓ
(z, z∗)

= (F1 − F1)◦ × (F1 − F1) ∪ (F1 − F2)◦ × (F1 − F2) ∪ (F2 − F2)◦ × (F2 − F2)

= ({0} × R) ∪ (R− × R+) ∪ (R× {0}).

For (v , u) = (1, 0), by Theorem 8, one obtains

Ngph NΓ
((z, z∗); (v , u)) = (F1 − F1)◦ × (F1 − F1) = {0} × R,

because F2 does not contain v .
Likewise for (v , u) = (0, 1) one has

Ngph NΓ
((z, z∗); (v , u)) = (F2 − F2)◦ × (F2 − F2) = R× {0},

because F1 is not contained in {u}⊥.

Helmut Gfrerer 1, Jiří V. Outrata 2 21 / 31



Ad (v) Example

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

NA(x̄;h)

For h ∈ {0} × R+

For h ∈ R+ × {0}

x̄

A

0

0 0

0

0

TA(x̄)

N̂A(x̄) NA(x̄)
NA(x̄;h)
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Ad (v) Example

Consider the parameterized variational system.

0 ∈ H(p, x) + NΓ(x)

with p ∈ R, x ∈ R2,

H(p, x) =

(
x1 − p
−x2 + x2

2

)
and

Γ =

{
x
∣∣∣∣12y1 − y2 ≤ 0,

1
2

y1 + y2 ≤ 0
}
.

Put (p̄, x̄) = (0, 0). One has K = TΓ(0) = Γ and GE (14) attains the form

0 ∈
[
−v + u1

−u2

]
+ NΓ(u).

So the second assumption of Theorem 7 is fulfilled and one has to consider the
following four pairs of directions:
A) v ≤ 0, u1 = v , u2 = 0;
B) v ≤ 0, u1 = 4

3 v , u2 = − 2
3 v ;

C) v ≤ 0, u1 = 4
3 v , u2 = 2

3 v ;
D) v ≥ 0, u1 = u2 = 0.
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Ad (v) Example

The relation at the left-hand side of (15) attains the form([
−b∗1

b∗2

]
,

[
b∗1
b∗2

])
∈ Ngph NΓ

(
(0, 0);

(
u,
[

v − u1

u2

]))
. (17)

The faces of K are: F1 = {(0, 0)},F2 = R+

[
−1
0.5

]
,F3 = R+

[
−1
−0.5

]
and F4 = K .

A consecutive application of Theorem 8 in the cases A-D to (17) implies that in all of
them b∗ = 0. It follows that S has the Aubin property at (0, 0) (even without verification
of the metric subregularity of the respective M).
Note that in this case we do not obtain the same conclusion by Theorems 1,4 or by the
approach from [DQZ06]. 4
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Ad (vi) Variational systems with a special constraint structure

Consider the special case (3) with Q(·) = N̂Γ(·), Γ = q−1(D) and assume that H is
continuously differentiable, D is a convex polyhedron in Rs and q : Rm → Rs is a
C2-mapping. To simplify the analysis, we will impose the following standing
assumption:
(A) ȳ is nondegenerate for q with respect to D, i.e., one has the implication

∇q(x̄)Tλ = 0
λ ∈ spND(q(x̄))

}
⇒ λ = 0. (18)

Under (A) ∃ a neighborhood N of x̄ such that for all x ∈ N

N̂Γ(x) = NΓ(x) = (∇q(x))T ND(q(x))

and for each x̄∗ ∈ N̂Γ(x̄)∃ a unique Lagrange multiplier λ ∈ ND(q(x̄)) such that

x̄∗ = (∇q(x̄))Tλ.

Further we introduce the Lagrangian

L(p, x , λ) := H(p, x) + (∇q(x))Tλ.
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Ad (vi) Computation of DM(p̄, x̄ ,0)

Proposition 1 ([HKO]).

Let λ̄ be the (unique) Lagrange multiplier associated with (p̄, x̄), i.e.,

0 = L(p̄, x̄ , λ̄), λ̄ ∈ ND(q(x̄)). (19)

Then for any (v , u) ∈ Rn × Rm one has

DM(p̄, x̄ , 0)(v , u) = ∇pH(p̄, x̄)v +∇x H(p̄, x̄)u +∇2〈λ̄, q〉(x̄)u + (∇q(x̄))T NC(∇q(x̄)u),
(20)

where C := KD(q(x̄), λ̄) = TD(q(x̄)) ∩ [λ̄]⊥.

Note that
∇x H(p̄, x̄) +∇2〈λ̄, q〉(x̄) = ∇xL(p̄, x̄ , λ̄).
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Ad (vi) Variational systems with a special constraint structure

Theorem 9.
Under the posed standing assumptions suppose that

M is metrically subregular at (p̄, x̄ , 0);

{u|0 ∈ ∇pH(p̄, x̄)v +∇xL(p̄, x̄ , λ̄)u + (∇q(x̄))T NC(∇q(x̄)u)} 6= ∅ for all v ∈ Rn;

For every nonzero (v , u) ∈ Rn × Rm such that

0 ∈ ∇pH(p̄, x̄)v +∇xL(p̄, x̄ , λ̄)u + (∇q(x̄))T NC(∇q(x̄)u)

the implication

0 ∈ (∇xL(p̄, x̄ , λ̄))T b∗ +∇q(x̄)T D∗ND((q(x̄); λ̄); (∇q(x̄)u, µ))(∇q(x̄)b∗)

0 = ∇pH(p̄, x̄)v +∇xL(p̄, x̄ , λ̄)u + (∇q(x̄))Tµ

µ ∈ NC(∇q(x̄)u)

⇒
⇒ b∗ ∈ ker(∇pH(p̄, x̄))T

holds true.

Then S has the Aubin property around (p̄, x̄) and
DS(p̄, x̄)(v) = {u|0 ∈ ∇pH(p̄, x̄)v +∇xL(p̄, x̄ , λ̄)u + (∇q(x̄))T NC(∇q(x̄)u)}.
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Ad (vi) Example

Consider the parameterized variational system.

0 ∈ H(p, x) + NΓ(x)

with p ∈ R, x ∈ R2,

H(p, x) =

(
x1 − p
−x2 + x2

2

)
and

Γ =

{
x
∣∣∣∣12y1 −

1
2

y2
1 − y2 ≤ 0,

1
2

y1 −
1
2

y2
1 + y2 ≤ 0

}
.
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Ad (vii) Conclusion

1) The presented procedure has potential to be used in testing the Aubin property of
solution maps to parameterized equilibria, governed by parameterized constraint
and variational systems, where ∇pG(p̄, x̄),∇pH(p̄, x̄) are not surjective, and

I Λ, Γ are convex polyhedra (Theorem 8);
I Γ = {x ∈ Rm|q(x) ∈ D}, where D is a convex polyhedron or a possibly even a

nonpolyhedral convex cone (e.g. Carthesian product of Lorentz cones).

Note that even if Γ is polyhedral, the Aubin property of S around (p̄, x̄) does not
mean that S has a single-valued and Lipschitzian localization because ∇pH(x̄ , ȳ)
is not surjective.

2) Theorem 2 may well be applied also to nonsmooth equations where M is, for
instance, a single-valued Lipschitzian mapping. In this way one can model
parameterized complementarity and implicit complementarity problems.

3) The applied technique is based on a combination of primal-space and dual-space
tools, namely the graphical derivatives and directional limiting coderivatives. This
combinations proved its efficiency also in testing the calmness of S [GO15] and
we plan to used also in the verification whether S has a single-valued Lipschitzian
localization.
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