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Part I. Introduction



Global optimization: Statement of the problem

f (x)→ min
x∈A

; x∗ = arg min
x∈A

f (x)



Typical assumptions on A

simple structure

situation like below is dissalowed



Typical assumptions on f

Lipschitz condition

|f (x)− f (x ′)| ≤ L||x − x ′||

smoothness

restrictions on the number of local minima or on the volumes of the
domains of attractions of local minimizers (or just the global one)

special assumptions like f = f1 − f2 with f1 and f2 convex (so-called
DC programming)

explicit (like polynomial) expressions allowing the use of interval
methods



Is it a multiextremal function?



The same but in two dimensions



Part II. Elements of multivariate geometry
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Volume of the d-dimensional unit ball
B(0, 1) = {x ∈ Rd : ‖x‖ ≤ 1}

Vd = vol(B(0, 1)) =
πd/2

Γ(d/2 + 1)



Volume of the d-dimensional unit ball

log10 Vd as a function of d :

F.e., V100 ' 2.368 · 10−40



d-dimensional ball

Almost all the volume is near the equator:

Th. For any c > 0, the fraction of the volume of the unit ball above the
plane x1 = c/

√
d − 1 is less than 2

c exp{−c2/2}.



Random points in a ball; projection to 2 dimensions



d-dimensional ball

Almost all the volume is also there (in B(0, 1) \ B(0, 1− ε) with ε = c/d):

Indeed, vol(B(0, 1− ε))/vol(B(0, 1)) = (1− ε)d ' 0 for ε = c/d , large d
and c fixed but large enough.
Radius of a uniform random point has density pd(r) = drd−1, 0 ≤ r ≤ 1.



d-dimensional cube and ball

Unit cube: {x = (x1, . . . , xd) ∈ Rd : |xi | ≤ 1/2}
Unit ball: B(0, 1) = {x ∈ Rd : ‖x‖ ≤ 1}
Length of the cube’s half-diagonal:√(
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d-dimensional cube



What is a shape of the d-dimensional cube?
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Volume of the largest inscribed ball into the unit cube

Volume of the cube =1, vd = πd/2

2dΓ(1+d/2)
(volume of the ball of radius 1/2)

v2 ' 0.78 v3 ' 0.52 v10 ' 0.0025 v20 ' 0.25 · 10−7 v100 ' 10−70



Radius of the ball of volume 1

Volume of cube = 1

r2 ≈ 0.56; r3 ≈ 0.62; r8 ≈
√

d
2πe

∣∣∣∣
d=8

≈ 0.84; rd ∼ c
√
d , d →∞

If we project the mass distribution of the ball of volume 1 onto a single
direction, we get a distribution that is approximately Gaussian with
variance 1/(2πe), which does not depend on d .



Gaussian random vectors

If x is Gaussian N(0 , Id) then distance from the origin

r =

√√√√ d∑
i=1

x2
i

is very close to
√
d : for any 0 < β <

√
d ,

Pr{
√
d − β ≤ r ≤

√
d + β} ≥ 1− 3β2/64

Two i.i.d. Gaussian vectors are almost orthogonal to each other. Similar
for uniform r.v. in a ball and in a cube.



Uniform points in a cube are at almost the same distance
from each other

The distribution of the distances

‖x − y‖ =

√√√√ d∑
i=1

(xi − yi )2

is concentrated around its expected value which is approximately
√
d/6.

Similar result holds for the ball.



10 uniform points

Distance between points grows very fast with dimension d ; all points are
at approximately the same distance from each other.



Summary: Features of the d-dimensional unit cube for
large d

In high-dimensional space

The ‘middle’ of the cube is virtually empty.

The cube is a ‘union’ of its corners.

The ‘average’ radius of the unit cube is about
√

d
2πe . At the same

time, the distance from the center to the middle of cube’s facets is
0.5 for any dimension d .



Consequences for the global optimization

If the dimension of the feasible domain is high then:

our 2D and 3D intuition may be totally misleading
(so that we can devise bad algorithms and make conceptual mistakes
in their analysis);

the test functions (like Rastrigin and Schekel) we use in dimensions
20 or more do not reflect reality;

the tables below will not look surprising.



Main topic:
Stochastic global optimization



Stochastic global optimization

Global random search (methodology, theory)

Stochastic models about the objective function (kriging/zilinskasing)

Heuristics

Applications



Stochastic models about the objective function

Sample paths of the Wiener process:



Stochastic models about the objective function

Sample paths of the integrated Wiener process:



Global random search (theory)

Convergence and rate of convergence

Statistical inference

Clever choice of updating rules using probabilistic considerations

Decrease of randomness in choosing the points and making the
decisions



Convergence: Borel-Cantelli lemma

Global random search algorithm converges if

∞∑
j=1

inf Pj(B(x∗, ε)) =∞ (1)

for any ε > 0, where B(x∗, ε)={x ∈A : ||x−x∗|| ≤ ε}; the infimum in (1)
is taken over all possible previous points and the results of the objective
function evaluations at them.
Standard choice of probability distributions to guarantee convergence:

Pj+1 = αj+1PU + (1− αj+1)Qj ,
∑
j

αj =∞ .



Rate of convergence

The number of points required to get precision ε with probability ≥ 1− γ,
for different dimensions d :

d γ = 0.1 γ = 0.05
ε = 0.5 ε = 0.2 ε = 0.1 ε = 0.5 ε = 0.2 ε = 0.1

1 0 5 11 0 6 14
2 2 18 73 2 23 94
3 4 68 549 5 88 714
5 13 1366 43743 17 1788 56911

10 924 8.8·106 9.0·109 1202 1.1·107 1.2·1010

20 9.4·107 8.5·1015 8.9·1021 1.2·108 1.1·1016 1.2·1022

50 1.5·1028 1.2·1048 1.3·1063 1.9·1028 1.5·1048 1.7·1063

100 1.2·1070 7.7·10109 9.7·10139 1.6·1070 1.0·10110 1.3·10140



Example: Pj+1 = αj+1PU + (1− αj+1)Qj , αj = 1/j .

Using the approximation
∑n

j=1 αj ' ln n, we obtain
n(γ) ' exp{−ln γ/PU(B)}.
If A = [0, 1]d this gives n(γ) ' exp{−ln γ/PU(B)}.
Assuming further B = B(x∗, ε) we obtain n(γ) ' exp{const · ε−d}, where
const = (−ln γ)/Vd (if x∗ lies closer to the boundary of A than ε then
n(γ) is even larger).
For example, for γ = 0.1, d = 10 and ε = 0.1, n(γ) is a number larger
than 101000000000

Even for d = 3, γ = 0.1 and ε = 0.1, the value of n(γ) is huge:
n(γ) ' 10238.



Statistical inference about M = min f

F (t) = Pr{x ∈ A : f (x) 6 t} =

∫
f (x)6t

P(dx)

is the c.d.f. of the sample {yj = f (xj), j = 1, . . . ,N} with M the lower
end-point of the interval where F is concentrated. Here xj ∼ P.
The main assumption:

F (t) = c0(t −M)α + o((t −M)α) as t ↓ M .

c0 is unknown but it is not important; α is the tail index (either known or
unknown).
Statistical inference about M = min f are based on several smallest values
extracted from the sample {yj = f (xj), j = 1 . . . , n}.
M = ess inf η, where η has c.d.f. F (t).



Optimal linear estimator of M = min f based on k order
statistics

M̂N,k = c
k∑

i=1

[ui/Γ(i + 2/α)] yi ,N ,

where Γ(·) is the Gamma-function,

ui =


(α + 1) , for i = 1 ,
(α− 1)Γ(i), for i = 1, . . . , k − 1 ,
(α− αk − 1)Γ(k) , for i = k ,

1/c =

{ ∑k
i=1 1/i , for α = 2,

1
α−2 (αΓ(k + 1)/Γ(k + 2/α)− 2/Γ(1 + 2/α)) , for α 6= 2 .



Confidence intervals for M = min f
and testing statistical hypotheses about M

The following confidence interval for M has asymptotic (as N →∞)
confidence level 1− δ:

[y1,N − (yk,N − y1,N)/ck,δ, y1,N ] , where ck,δ =
[
1− (1− δ)1/k

]−1/α
− 1 .

Procedures of testing hypotheses about M are based on constructing
confidence intervals for M. If we want to test the hypothesis H : M 5 f∗
then we construct a c.i. and if f∗ belongs to this c.i., then the hypothesis
H gets accepted.
These procedures can be used for:

devising stopping rules in global random search

branch and probability bound methods



Branch and (probability) bound methods

branching of the optimization set into a tree of subsets (e.g by a
triangulation),

making (probabilistic) decisions about the prospectiveness of the
subsets for further search, and

selection of the subsets that are recognized as prospective for further
branching.



Tail index α

F (t) = Pr{x ∈ A : f (x) 6 t} = c0(t −M)α + o((t −M)α) as t ↓ M .

Estimation of α is difficult and non-conclusive.

If f (x) is locally linear close to x∗ (when x∗ lies on the boundary of
A) then α = d .

If f (x) is locally quadratic around x∗ then α = d/2.



Curse of dimensionality:
Precision of statistical inferences as a function of α

MSE of the (optimal) estimators has order

cN−2/α as N →∞ .

Example: c = 1, α = d . To achieve precision (value of MSE) 0.01 the
sample size N should be

N = 10d .



Random points in a ball; projection to 2 and 1 dimensions



Probabilistic models: Gibbs densities

πβ(x) = exp{−βf (x)}
/∫

A
exp{−βf (z)}dz .

(A) Graph of the objective function f ;
(B) Gibbs densities with β = 1 (dotted line) and β = 3 (solid line)



Evolutionary (population-based) methods

Parent generation:

x
(j)
1 , . . . , x

(j)
nj

Generation of descendants (children):

x
(j+1)
1 , . . . , x

(j+1)
nj+1

Population-based methods are defined by:

(a) the stopping rule,

(b) the rules for computing the numbers nj (population sizes), and

(c) the rules for obtaining the population of descendants from the
population of parents.



Stopping rules

1 total number of points generated

2 Using Liptchitz-type conditions

3 Using statistical procedures



Population sizes

1 nj depend on the statistical information gathered during the search;

2 the sequence of nj is non-increasing: n1 > n2 > . . . > nj > . . .;

3 nj = n for all j ;

4 the sequence of nj is non-decreasing: n1 6 n2 6 . . . 6 nj 6 . . .



Choice of updating probability laws

Rj+1(dx) =

[∫
Rj(dz)fj(z)

]−1 ∫
Rj(dz)fj(z)Qj(z , dx).

R(dx) =

[∫
g(z)R(dz)

]−1 ∫
R(dz)g(z)Q(z , dx),

where, for example, g(x) = exp{−βf (x)}



Limiting behaviour of the population distributions

Similar to Gibb’s densities but the limiting measures do not have to attract
to the neighbourhood of the global minimizer



Thank you and references

Thank you for attention
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